Red Airforce

Red Airforce

Bomber ship

Gamilon Drill missile Bombership

Fighters and planes   


Creator of a Billion Light Years Away

The postwar period of development of aircraft production was marked by a scientific and technical revolution - the beginning era of jet aircraft. In the 1930s it became clear that ordinary planes with piston engines and propellers had been developed almost completely, and that there was not much room for further improvement. Since WWII each successive generation of fighters demonstrated increased speed and altitude compared to its predecessor, to provide a machine better adapted than that of any competitor to the needs of all potential customers.

Russian analysts divine five [or six] generations of post-World War II fighter aircraft

  • 0 - 1945-1955 - The "Zeroeth" generation fighter aircraft were the first military aircraft using jet engines. A few were developed during the closing days of World War II but saw very limited combat operations. These include World War II era fighters such as the Me 262, and early post-War aircraft such as the F-80 and F-84.
  • 1 - 1945-1955 - First generation fighter aircraft were the first military aircraft using jet engines. A few were developed during the closing days of World War II but saw very limited combat operations. The first generation can be split into two broad groups: World War II era fighters such as the Me 262 and mature first generation fighters such as the F-86 used in the Korean War. Example of first generation jet fighters are the F-84, F-86 and F-100. Mikoyan's design office worked on the twin-engined fighter MiG-9. Yakovlev's design office brought out the single-engined fighter Yak-15 in October 1945; it was already on the airfield for preliminary tests and for taxiing. The MiG-9 and Yak-15 promised to be lighter, easier to fly, to have better flying characteristics and be more reliable than the German planes.
  • IndexF14

    F-14 diagram


    F14 schematics


    Sea Harrier schematics


    EA 6 Prowler diagram


    EA 6 Prowler diagram


    Panavia Tornado diagram


    Panavia Tornado diagram

    2 - 1955-1960 - Second Generation fighter aircraft exhibit more advanced avionics, engines, and used the first guided air-to-air missiles. The period from 1950 until 1955 is marked by a dearth of significant interceptor prototypes except for the 1953 appearance of the MiG-17. Second-generation aircraft-including the MIG-15 to MIG-19 and U.S. century series fighters - were designed during the 1940s and 1950s. Although they are still found in fighter inventories worldwide, older planes probably have limited combat potential when confronting more modern fighters, since they may suffer from several disadvantages. For example, they may carry less sophisticated munitions and have less capable sensors. The early MiG- and Su-series aircraft have been improved in their air-to-air role. The MiG-23 Flogger B was a second generation fighter which had a secondary ground attack capability greater than the Fishbed or Fitter.
  • 3 - 1960-1970 - Third Generation fighter aircraft exhibit more advanced avionics, engines, and weapons. The changes in the fighter combat conception, new air-to-air guided missiles and the results from first and second generation fighter operations gave rise to the third generation such as the the MiG-21 and MiG-23. Third-generation aircraft may provide somewhat more military capability, especially if they have gone through extensive modifications since they were built. Designed during the 1960s through 1970s, this generation includes the MIG-27 series designed by former Soviet Union's Mikoyan Design Bureau. The third generation fighter-bombers and tactical bombers included the Su-24 and their derivatives, the F-4s and A-7s built by the United States; and the European designed Mirage 3, Mirage 5, Tornado, and F-l.
  • 4 - 1970-1990 - Fourth generation continued the trend towards multi-role fighters equipped with increasingly sophisticated avionics and weapon systems. These fighters also began emphasizing maneuverability rather than speed to succeed in air-to-air combat. Fourth-generation fighters, designed during the 1960s and 1970s,

    F4 Phantom diagram


    F22 schematic


    F-16 Schematic


    SEPECAT Jaguar schematics


    SEPECAT Jaguar schematic

    include the US-designed F-14, F-15, F-16, and F/A-18; the Soviet-built SU-27 and MIG-29; and the European Mirage 2000. Fourth generation aircraft usually have more sophisticated avionics than their predecessors, more powerful engines, and are able to operate more capable missiles.
  • 5 - 1990-2010 - Fifth generation fighters use advanced integrated avionics systems to provide the pilot with a complete battlespace awareness, and use of low observable "stealth" technology. The F-22 and F-35 were the first fifth generation fighters, with Russia following with the Mikoyan Gurevich MFI prototype and the Sukhoi PAK-FA, and China with the J-20.

F-18 Diagram

Making the situation even more confusing, the Chinese have their own particular order of ranking. The Chinese call the Russian's 5th generation fighter a 4th generation machine.

2015-07-21 20.03.17

Earth Fightercraft

The term "4.5 generation" is also sometimes seen [the Chinese call them 3.5 generation]. These are more recent fourth generation fighters, retaining the basic characteristics of fourth generation planes but with enhanced capabilities provided by more advanced technologies that might be seen in fifth generation fighters. Good examples are the F/A-18E/F Super Hornet, Eurofighter Typhoon, and Dassault Rafale. All make use of advanced avionics to improve mission capability and limited stealth characteristics to reduce visibility when compared to older fourth generation aircraft.

Stealth characteristics markedly enhance the capability for survivable attack of defended targets. And that remains true, even though evolving modern air defenses available on the international arms markets have increasing capability against currently deployed levels of stealth. Hence, to continue to operate effectively in the face of these defenses, stealth has to be supplemented with other survivability features. Nonetheless, stealth aircraft operate at much lower levels of support than conventional aircraft and even small numbers of stealth aircraft can greatly leverage the capabilities of the remainder of the bomber force and of the tactical fighter forces.

Europe and Japan are behind in applied stealth technology as evidenced by U.S. aircraft programs such as the F-22,

F-35 diagram


SAAB Grippen diagram

Article-2336526-1A2F7043000005DC-106 964x582

Eurofighter diagram


F-15 Eagle diagram

B-2, and F-117A. Most of the applied foreign low-observable work involves basic shaping, material coating techniques, and signature testing requirements. Europe has been led by France, Sweden, Germany, and the United Kingdom in various types and levels of low-observable applications. Applications on fighter aircraft have generally been at fundamental applied levels, primarily using absorbent coatings, limited structural shaping, and absorbent structure. Applications seem to be limited to the areas with highest signature return rather than application to an entire airframe. European firms are also working on stealth technology applications to cruise missiles and unmanned aerodynamic vehicles. The rapid growth of a globalized economy has deepened the degree of international cooperation and expanded the variety of methods of cooperation in the international arms production industry to such an extent that a globalization trend has also emerged in this field. The globalization of the

F-16 diagram

national defense industry refers to the change from the traditional preference for autarky to that of a globally oriented market in terms of research, production, management, and sales. At present, there are mainly three ways in which globalization exhibits itself. The first is through the purchasing of weapons from other countries and taking part in the production of these weapons (including granting of special permits, joint cooperation and development ventures, and compensation trade). An example is the joint production of F-16 fighter jets by the United States, Holland, Denmark and Norway. The second method is through military cooperation packages covering weapons trade, production and maintenance, and joint military exercises between different countries, e.g. the signing of the ten-year military cooperation agreement package between India
Av 4204 propellers fig p070 W


Fig 7

Fig 7 Turbo prop


Turbo Prop Engine

Jet engine diagram

Turbo Prop Jet Engine Diagram


JUMO 004 diagram


Prop diagram


Turbo Prop

and Russia in 1999. The final means is through cross- border joint ventures, and joint research and development projects between nations (including international group companies, international integration and transnational amalgamation). The four-nation joint venture for the production of "Eurofighter-2000" by Britain, Germany, Italy and Spain is an example. Distinguished US Air Force historian Richard Hallion suggested in 1980 that by that time there had been six generations of jet fighter aircraft:

Kestrel diagram



P1127 14

P1127 14 Kestrel

  1. High subsonic (1943-50): Me 262, Meteor, P-80, Vampire, Yak-15, MiG-9, Saab J-21, F-84 straightwing, F9F straightwing, Ouragan, Venom. Little aerodynamic difference from the last generation of propeller-driven fighters. First- and second-generation turbojets; wood, fabric, and all-metal construction; optical gunsights; straight wing and straight tail. Mechanical control systems. Primitive ejection seats. Mach 0.75-0.85.
  2. Transonic (1947-55): F-86, F-84 sweptwing, F9F sweptwing, MiG-15/17, Hunter, Mystère TV. Second-generation turbojets; radar gunsights; swept wings; generally have adjustable horizontal stabilizers. Early hydromechanical flight control systems. Mach 0.90-1.05.
  3. Early supersonic (1953-60): MiG-19, F-100, F-8. Swept wings, all-moving tails, radar gunsights, introduction of air-to-air missile armament. Third-generation turbojet engines. Early stability augmentation technology. Generally adaptable for both air-to-air and air-to-ground missions. Mach 1.3.
  4. Supersonic (limited purpose) (1955-70): F-104, early model MiG-21, EE (BAC) Lightning, early model Mirage III. Supersonic aerodynamics, especially area ruling; fourth-generation turbojets; radar for search and fire control. Overreliance on -air-to-air missiles based on unrealistic expectations. Mach 2.0.
  5. Supersonic (multirole) (1958-80): F-105, F-4, late-model MiG-21, late-model Mirage III, F-5, F-111, Mirage V, Su-24, MiG-23/27, Jaguar, Mirage Fl, Kfir. Refined supersonic aerodynamic design, including canards and variable geometry wings; fourth- and fifth-generation engines; stability augmentation; mixed-gun air-to-air missile (AAM) armament; terrain-following radar for low-level high-speed flight; radar search and fire control; infrared sensors; heads up displays (HUD); laser ranging and targeting; wide range of air-to-surface missiles, bombs, and rockets, including precision-guided munitions. Mach 1.4-2.5.
  6. Supersonic multirole, high efficiency (1974-present): F-14, F-15, F-16, F-18, Mirage 2000, Tornado, MiG-29, Su-27. Combined the characteristics of the fifth-generation fighters with advances in propulsion, radar (multiple target track-while-scan, look-down/shoot-down), sensor, and electronic flight control technology to generate highly maneuverable, highly agile aircraft that can be swing-roled for air-to-air and air-to-ground missions. Fifth- or sixth-generation gas-turbine engines; engine thrust-to-weight ratios in excess of one; ability to attain supersonic speeds without afterburning; sustained high-G flight, and controllability below 70 knots at angles of attack exceeding 70 degrees. High degree of energy efficiency. Mix of cannonand missile armament, coupled with diverse air-to-ground weaponry. Mach 1.8-2.5.
KusoCartoon 14715649778565

Zarconian Spacefighter

Fighter and Attack aircraft represent some of the most exciting machines in the sphere of military power because of their design, speed, and weaponry. The sheer diversity of this category of aircraft, their evolution through military history, and the modern race to produce the most advanced and lethal fighter and attack aircraft yield a great deal of information and generates more interest than any other category of military aircraft.


In the early 1900s, as the airplane emerged as a vital reconaissance tool during WWI, the need to protect the skies over the battlefield was realized. The fighter aircraft emerged in 1914 as a countermeasure to aerial reconaissance, and evolved quickly as new technologies were developed to compliment the fighter aircraft's mission.

It wasn't until WWII that the fighter aircraft began reaching a level of refinement recognized in today's fighter and attack aircraft - indeed beneficiaries of these developments. Integrated systems instead of disparate technologies cobbled together became the norm. Improved aerodynamics, the monoplane design, engine performance, weapons accuracy and destructive force, and survivability became design factors that worked in tandem to determine an aircraft's effectiveness.

As WWII progressed, the fighter aircraft's role varied. The roles of defending the skies from attacking strategic bombers and bomber escort into enemy territory both yielded numerous epic air-to-air confrontations. The role of ground attack of strategic targets and enemy infantry became prominent as well. And naval fleet attack and defense by carrier-borne aircraft proved how a country's military might could be projected globally.

During the Korean conflict and some of the other regional conflicts that occurred prior to it, jet propulsion on military aircraft began to take shape. As the Vietnam conflict progressed into its waning years, America's emphasis on technological advances, pilot training, and improved armament designed to engage multiple enemies simultaneously catapulted the world into what is perceived as the modern age of the fighter aircraft.


In both cases, fighter and attack aircraft are typically one- or two-seated, relatively small compared to its bomber and transport counterparts, and represent a higher thrust to weight ratio making them the fastest category of military aircraft.

The role of fighter aircraft can be generalized as that of air superiority. Nutralizing other enemy fighter aircraft, or in the interceptor role to target enemy bombers and being complimented with the increased firepower to destroy these larger targets.

Attack aircraft are 

2013-11-20 20 21 57

Garruman Fighters

2013-11-20 20 27 44

Garraman Fighters

equipped to strike ground or naval targets. This might include providing close-air support for friendly troops via the destruction of heavily armored or dug-in enemy forces, elimination of enemy anti-air batteries and radar nutralization, or strategic percision destruction of high-value enemy targets.

Aircraft are armed and equipped specifically for their roles, and generally have at least rudimentary methods of defending themselves.

Modern AdvancementsEdit

Presently, this category of aircraft is dominated by manufactures in America, Russia, and joint ventures coming out of Europe. However, developments from Israel, India and China continue to emerge out of the desire for an autonomous military aircraft production industry.

Additionally, as the emphasis appears to be moving away from air superiority and more toward flexibility of the platform to both protect the skies and eliminate targests on the ground, the multi-role fighter aircraft is being given the most significant attention at this time.


Gamilon fighters



Su 27



SU-34 Fencer Swing Wing

MiG 35